Identifying short surface ligands on metal phosphide quantum dots

نویسندگان

  • Edwin A. Baquero
  • Wilfried-Solo Ojo
  • Yannick Coppel
  • Bruno Chaudret
  • Bernhard Urbaszek
  • Céline Nayral
  • Fabien Delpech
چکیده

The control and understanding of the chemical and physical properties of quantum dots (QDs) demands detailed surface characterization. However, probing the immediate interface between the inorganic core and the ligands is still a major challenge. Here we show that using cross-polarization magic angle spinning (MAS) NMR, unprecedented information can be obtained on the surface ligands of Cd3P2 and InP QDs. The resonances of fragments which are usually challenging to detect likemethylene ormethyl near the surface, can be observed with our approach. Moreover, ligands such as hydroxyl and ethoxide which have so far never been detected at the surface can be unambiguously identified. This NMR approach is versatile, applicable to any phosphides and highly sensitive since it remains effective for identifying quantities as low as a few percent of surface atoms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying short surface ligands on metal phosphide quantum dots† †Electronic supplementary information (ESI) available: Further experimental details and characterization data. See DOI: 10.1039/c6cp03564g Click here for additional data file.

The control and understanding of the chemical and physical properties of quantum dots (QDs) demands detailed surface characterization. However, probing the immediate interface between the inorganic core and the ligands is still a major challenge. Here we show that using cross-polarization magic angle spinning (MAS) NMR, unprecedented information can be obtained on the surface ligands of Cd3P2 a...

متن کامل

Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode

Highly ordered gallium indium phosphide layers with the low bandgap have been successfully grown on the (100) GaAs substrates, the misorientation toward [01-1] direction, using the low-pressure metal organic chemical vapor deposition method. It is found that the optical properties of the layers are same as those of the disordered ones, essentially different from the ordered ones having two orie...

متن کامل

Experimental and Theoretical Investigation of Indium Phosphide Quantum Dot Growth Mechanisms

Indium phosphide quantum dots stand out as the most promising candidate to replace the currently commercialized cadmium-containing materials for optoelectronic applications. To produce high-quality materials, significant efforts have been devoted to their synthetic development and growth mechanism studies. This thesis uses experimental and theoretical methods to study the growth of indium phosp...

متن کامل

Quantum dots of CdS synthesized by micro-emulsion under ultrasound: size distribution and growth kinetics

Quantum dots of CdS with hexagonal phase were prepared at relatively low temperature (60 oC) and short time by micro-emulsion (O/W) under ultrasound. This study was focused on the particle size distribution and the growth kinetics. The particle size distribution obtained from the optical absorption edge. It was relatively symmetrical with sonication time. In addition, an agreement was observed ...

متن کامل

Electron Relaxation in Colloidal InP Quantum Dots with Photogenerated Excitons or Chemically Injected Electrons

Femtosecond transient absorption spectroscopy has been used to characterize charge carrier relaxation from the second excited state (1P) to the first excited state (1S) in colloidal indium phosphide (InP) quantum dots (QDs). A three pulse experiment consisting of a visible pump, infrared pump, and white light probe was used to characterize the relaxation of photogenerated excitons, and the role...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016